Optimization of Alpha-Beta Log-Det Divergences and their Application in the Spatial Filtering of Two Class Motor Imagery Movements

نویسندگان

  • Deepa Beeta Thiyam
  • Sergio Cruces
  • Javier Olias
  • Andrzej Cichocki
چکیده

The Alpha-Beta Log-Det divergences for positive definite matrices are flexible divergences that are parameterized by two real constants and are able to specialize several relevant classical cases like the squared Riemannian metric, the Steins loss, the S-divergence, etc. A novel classification criterion based on these divergences is optimized to address the problem of classification of the motor imagery movements. This research paper is divided into three main sections in order to address the above mentioned problem: (1) Firstly, it is proven that a suitable scaling of the class conditional covariance matrices can be used to link the Common Spatial Pattern (CSP) solution with a predefined number of spatial filters for each class and its representation as a divergence optimization problem by making their different filter selection policies compatible; (2) A closed form formula for the gradient of the Alpha-Beta Log-Det divergences is derived that allows to perform optimization as well as easily use it in many practical applications; (3) Finally, in similarity with the work of Samek et al. 2014, which proposed the robust spatial filtering of the motor imagery movements based on the beta-divergence, the optimization of the Alpha-Beta Log-Det divergences is applied to this problem. The resulting subspace algorithm provides a unified framework for testing the performance and robustness of the several divergences in different scenarios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Log-Determinant Divergences Revisited: Alpha-Beta and Gamma Log-Det Divergences

In this paper, we review and extend a family of log-det divergences for symmetric positive definite (SPD) matrices and discuss their fundamental properties. We show how to generate from parameterized Alpha-Beta (AB) and Gamma log-det divergences many well known divergences, for example, the Stein’s loss, S-divergence, called also Jensen-Bregman LogDet (JBLD) divergence, the Logdet Zero (Bhattac...

متن کامل

Infinite-dimensional Log-Determinant divergences II: Alpha-Beta divergences

This work presents a parametrized family of divergences, namely Alpha-Beta LogDeterminant (Log-Det) divergences, between positive definite unitized trace class operators on a Hilbert space. This is a generalization of the Alpha-Beta Log-Determinant divergences between symmetric, positive definite matrices to the infinite-dimensional setting. The family of Alpha-Beta Log-Det divergences is highl...

متن کامل

Information Theoretic Approaches for Motor-Imagery BCI Systems: Review and Experimental Comparison

Brain computer interfaces (BCIs) have been attracting a great interest in recent years. The common spatial patterns (CSP) technique is a well-established approach to the spatial filtering of the electroencephalogram (EEG) data in BCI applications. Even though CSP was originally proposed from a heuristic viewpoint, it can be also built on very strong foundations using information theory. This pa...

متن کامل

Effects of Altitude and Soil Properties on Alpha and Beta Diversity in Plour Rangelands of Mazandaran

Biodiversity is one of the important aspects of natursal systems which supports ecosystem functions. Therefore, the preservation of biodiversity is necessary for human well-being. The curreny study aimed to investigate changes of alpha and beta diversity and its components along the elevation gradient of five classes and to evaluate the effects of physical and chemical characteristics of soil o...

متن کامل

A Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System

Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017